Here’s a couple of Google Colab or Jupyter notebooks that I’ve created in order to explore various ML algorithms and techniques. The same can be found on my GitHub repository by clicking on the icon on the sidebar.
Supervised Learning Algorithms
Logistic Regression on HR Analytics dataset : https://github.com/trajnishBrown/machine-learning/blob/main/hr_analytics.ipynb
Logistic Regression on Iris dataset : https://github.com/trajnishBrown/machine-learning/blob/main/iris_analytics.ipynb
Decision Tree on Titanic dataset : https://github.com/trajnishBrown/machine-learning/blob/main/titanic_decision_tree.ipynb
SVM on Digits dataset : https://github.com/trajnishBrown/machine-learning/blob/main/digits_svm.ipynb
Random Forest on Iris dataset : https://github.com/trajnishBrown/machine-learning/blob/main/iris_random_forest.ipynb
Un-Supervised Learning Algorithms
K-Means clustering of Iris dataset : https://github.com/trajnishBrown/machine-learning/blob/main/iris_kmeans.ipynb
Naive Bayes on Wine dataset : https://github.com/trajnishBrown/machine-learning/blob/main/wine_naive_bayes.ipynb
Other Techniques
Cross Validation on Iris dataset : https://github.com/trajnishBrown/machine-learning/blob/main/iris_cross_validation.ipynb
Hyper-parameter tuning on Digits dataset : https://github.com/trajnishBrown/machine-learning/blob/main/digits_hyper_parameter_tuning.ipynb
Full-Stack Projects
Bangalore Home Price Prediction using K-fold cross validation and Grid Search CV (linear regression, lasso, decision tree) :
https://github.com/trajnishBrown/machine-learning/blob/main/blore_real_estate_price_prediction_project.ipynb
Frontend and backend code: https://github.com/trajnishBrown/blore-home-price-prediction